Navitar's Vision for the Future of 4K/8K Imaging

The Preciso 16 mm lens is the first in a series that delivers uncompromised image capture for challenging applications using large format, high resolution sensors. This versatile lens maintains high contrast, high resolution over the full conjugate range, while maintaining high MTF and low distortion. Navitar's Preciso Series bridges the current gap between close focus lenses optimized for general MV applications, and high resolution, HDR grade objectives used for emerging "look up" applications in AI, robotics, security, and autonomous vehicles.

This lens Supports Sony IMX series sensors with $2.45 \mu \mathrm{~m}$ pixel and Sony's newest 4th generation sensors with $2.74 \mu \mathrm{~m}$ pixel.

INDUSTRY LEADING FEATURES

Bi-aspheric design with ultra-low dispersion glass maximizes MTF and reduces distortion

Optimized for $1^{\prime \prime}$ sensors and supports up to $1.1^{\prime \prime}$ sensors
$>$ High resolution across focal distances of 100 mm -Infinity
Chromatic Correction from 435nm-700nm
) Internal focus mechanism
) Low chief ray angle
Convenient c-mount design, compatible with existing cameras

SPECIFICATIONS						
Focal Length	10 mm	16 mm	25 mm	35 mm	50 mm	100 mm
F-Number	1.8-22 (Iris)					
Max Image Circle	$\begin{gathered} 18.0 \mathrm{~mm} \\ \text { (1.1" Sensor) } \end{gathered}$	$\begin{gathered} 18.0 \mathrm{~mm} \\ \text { (1.1" Sensor) } \end{gathered}$	$\begin{gathered} 18.0 \mathrm{~mm} \\ \text { (1.1" Sensor) } \end{gathered}$	$\begin{gathered} 18.0 \mathrm{~mm} \\ \text { (1.1" Sensor) } \end{gathered}$	$\begin{gathered} 18.0 \mathrm{~mm} \\ \text { (1.1" Sensor) } \end{gathered}$	$\begin{gathered} 18.0 \mathrm{~mm} \\ \text { (1.1" Sensor) } \end{gathered}$
Wavelength Correction	435 mm -700nm	435mm-700nm	435mm-700nm	435mm-700nm	435mm-700nm	$435 \mathrm{~mm}-700 \mathrm{~nm}$
Min / Max Object Distance	$50 \mathrm{~mm} / \infty$	$100 \mathrm{~mm} / \infty$	$150 \mathrm{~mm} / \infty$	$200 \mathrm{~mm} / \infty$	$250 \mathrm{~mm} / \infty$	$300 \mathrm{~mm} / \infty$
Focus Method	Internal Focus					
TV Distortion , ∞]	[1\%, 0.1\%]	[1\%, 0.1\%]	[1\%, 0.1\%]	[1\%, 0.1\%]	[1\%, 0.1\%]	[1\%, 0.1\%]
MTF		See Graphs				
Relative Illum. (2/3", ${ }^{\prime \prime}$, 1.1")		[85\%, 62\%, 53\%]				
Chief Ray Angle	$<5^{\circ}$	$<5^{\circ}$	$<5^{\circ}$	$<5^{\circ}$	$<5^{\circ}$	$<5^{\circ}$
Barrel Length		96.0 mm				
Max Barrel Diameter		46.0 mm				

KEY

